Fluorescence-labeled bis-benzamidines as fluorogenic DNA minor-groove binders: photophysics and binding dynamics.
نویسندگان
چکیده
In recent decades there has been great interest in the design of highly sensitive sequence-specific DNA binders. The eligibility of the binder depends on the magnitude of the fluorescence increase upon binding, related to its photophysics, and on its affinity and specificity, which is, in turn, determined by the dynamics of the binding process. Therefore, progress in the design of DNA binders requires both thorough photophysical studies and precise determination of the association and dissociation rate constants involved. We have studied two bis-benzamidine (BBA) derivatives labeled by linkers of various lengths with the dye Oregon Green (OG). These fluorogenic binders show a dramatic fluorescence enhancement upon binding to the minor groove of double-stranded (ds) DNA, as well as significant improvement in their sequence specificity versus the parent BBA, although with decreased affinity constants. Detailed photophysical analysis shows that static and dynamic quenching of the OG fluorescence by BBA through photoinduced electron transfer is suppressed upon insertion of BBA into the minor groove of DNA. Fluorescence correlation spectroscopy yields precise dynamic rate constants that prove that the association process of these fluorogenic binders to dsDNA is very similar to that of BBA alone and that their lower affinity is mainly a consequence of their weaker attachment to the minor groove and the resultant faster dissociation process. The conclusions of this study will allow us to go one step further in the design of new DNA binders with tunable fluorescence and binding properties.
منابع مشابه
Spectroscopic and Molecular Docking Studies on DNA Binding Interaction of Podophyllotoxin
The binding interaction of novel podophyllotoxin derivative, (3R,4R)-4-((benzo[d][1,3]dioxol-5-yl)methyl)-dihydro-3-(hydroxy(3,4-dimethoxyphenyl) methyl) furan-2(3H)-one (PPT), with calf thymus DNA (ctDNA) has been examined using UV-Visible absorption spectrophotometry, fluorescence spectroscopy, viscosity measurement and molecular docking studies. UV-Vis absorption results showed hyperchromic ...
متن کاملMolecular Docking and Molecular Dynamics Study of DNA Minor Groove Binders
The fundamental problems in drug discovery are based on the process of molecular recognition by small molecules. The binding specificity of DNA-small molecule is identified mainly by studying the hydrogen bonding and polar interactions. Majority of the minor groove binders and their mechanism of action at the molecular level are not well studied. As these small molecules can act as effective th...
متن کاملMinor Groove of DNA as Target for Drug Design
Small minor groove binding molecules have been found to influence DNA-dependent processes. Their affinity is high enough to prevent transcription factors from interaction with the DNA. Some of the minor groove binders can be even designed to target only specific DNA sequences. Thereby, they are able to influence transcription, which provides the possibility to systematically regulate the synthe...
متن کاملDiaminobenzene schiff base, a novel class of DNA minor groove binder.
Molecules that target the deoxyribonucleic acid (DNA) minor groove are relatively sequence specific and they can be excellent carrier structures for cytotoxic chemotherapeutic compounds which can help to minimize side effects. Two novel isomeric derivatives of diaminobenzene Schiff base [N,N'-bis (2-hydroxy-3-methoxybenzylidene)-1,2-diaminobenzene (2MJ) and N,N'-bis(2-hydroxy-3-methoxybenzylide...
متن کاملSemi-automatic synthesis, antiproliferative activity and DNA-binding properties of new netropsin and bis-netropsin analogues.
A general route for the semi-automatic synthesis of some new potential minor groove binders was established. Six four-numbered sub-libraries of new netropsin and bis-netropsin analogues have been synthesized using a Syncore Reactor. The structures of the all new substances prepared in this investigation were fully characterized by NMR ((1)H, (13)C), HPLC and LC-MS. The antiproliferative activit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2015